ALEKS - Assessment and Learning
   

8.3 Selected Bibliography

 

Albert, D., editor. (1994). Knowledge Structures. New York: Springer-Verlag.
Albert, D. and Hockmeyer, C. (1997). Adaptive and dynamic hypertext tutoring systems based on knowledge space theory. In B. du Boulay and R. Mizoguchi, editors, Artificial Intelligence in Education: Knowledge and Media in Learning Systems, volume 39 of Frontiers in Artificial Intelligence and Applications, pp. 553-555. Amsterdam: IOS Press.
Albert, D. and Lukas, J., editors. (1999). Knowledge Spaces: Theories, Empirical Research, Applications. Mahwah, NJ: Lawrence Erlbaum Associates.
Albert, D., Bahrick, H., Falmagne, J.-C., Witteveen, C., d'Ydewalle, G., and Toda, M. (1992). Representation and assessment of knowledge. In B. Wilpert, H. Motoaki, and J. Mitsumi, editors, General Psychology and Environmental Psychology, volume 2, pp. 9-98, July 1990. Proceedings of the 22nd International Congress of Applied Psychology. Hove, UK: Lawrence Erlbaum Associates, Ltd.
Albert, D. and Held, T. (1994). Establishing knowledge spaces by systematical problem construction. In D. Albert, editor, Knowledge Structures, vol. 1, pp. 78-112. Berlin, Heidelberg: Springer-Verlag.
Albert, D., Held, T., and Schrepp, M. (1992). Construction of knowledge spaces for problem solving in chess. In G.H. Fischer and D. Laming, editors, Contributions to Mathematical Psychology, Psychometrics, and Methodology, pp. 123-135. New York: Springer-Verlag.
Arasasingham, R., Lonjers, S., Martorell, I., Potter, F., and Taagepera, M. (2005). Assessing the Effect of Web-Based Learning Tools on Student Understanding of Stoichiometry Using Knowledge Space Theory. Journal of Chemical Education, 82, 1251.
Arasasingham, R., Lonjers, S., Potter, F., and Taagepera, M. (2004). Using Knowledge Space Theory to Assess Student Understanding of Stoichiometry. Journal of Chemical Education, 81, 1517.
Baumunk, K. and Dowling, C. (1997). Validity of spaces for assessing knowledge about fractions. Journal of Mathematical Psychology, 41, 99-105.
Brandt, S., Albert, D., and Hockemeyer, C. (1999). Surmise relations between tests - preliminary results of the mathematical modelling. Electronic Notes in Discrete Mathematics, 2.
Cosyn, E. (2002). Coarsening a knowledge structure. Journal of Mathematical Psychology, 46, 123-139.
Cosyn, E., Doble, C., Falmagne, J.-C., Lenoble, A., Thiéry, N., and Uzun, H. (In Preparation). Assessing mathematical knowledge in a learning space. In D. Albert, C. Doble, D. Eppstein, J.-C. Falmagne, and X. Hu, editors, Knowledge Spaces: Applications in Education. In Preparation.
Cosyn, E., Doignon, J.-P., Falmagne, J.-C., and Thiéry, N. (2006). The assessment of knowledge, in theory and in practice. In B. Ganter and L. Kwuida, editors, Formal Concept Analysis, 4th International Conference, ICFCA 2006, Dresden, Germany, February 13-17, 2006, Lecture Notes in Artificial Intelligence, pp. 61-79. Berlin, Heidelberg, New York: Springer-Verlag.
Cosyn, E. and Thiéry, N. (2000). A practical procedure to build a knowledge structure. Journal of Mathematical Psychology, 44, 383-407.
Cosyn, E. and Uzun, H. (2009). Note on two necessary and sufficient axioms for a well-graded knowledge space. Journal of Mathematical Psychology, 53(1), 40-42.
Degreef, E., Doignon, J.-P., Ducamp, A., and, Falmagne J.-C. (1986). Languages for the assessment of knowledge. Journal of Mathematical Psychology, 30, 243-256.
Doignon, J.-P. (1994). Knowledge spaces and skill assessments. In G. Fischer and D. Laming, editors, Contributions to Mathematical Psychology, Psychometrics, and Methodology, pp. 111-112. New York: Springer-Verlag.
Doignon, J.-P. (1999). Dimensions of chains of relations. Abstract of a Talk presented at the OSDA98, Amherst, MA, September 1998. Electronic Notes in Discrete Mathematics, 2.
Doignon, J.-P. and Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175-196.
Doignon, J.-P. and Falmagne, J.-C. (1987). Knowledge assessment: A set theoretical framework. In B. Ganter, R. Wille, and K.E. Wolfe, editors, Beiträge zur Begriffsanalyse: Vorträge der Arbeitstagung Begriffsanalyse, Darmstadt 1986, pp. 129-140. Mannheim: BI Wissenschaftsverlag.
Doignon, J.-P. and Falmagne, J.-C. (1988). Parametrization of knowledge structures. Discrete Applied Mathematics, 21, 87-100.
Doignon, J.-P. and Falmagne, J.-C. (1997). Well-graded families of relations. Discrete Mathematics, 173, 35-44.
Doignon, J.-P. and Falmagne, J.-C. (1999). Knowledge Spaces. Berlin, Heidelberg, New York: Springer-Verlag.
Doignon, J.-P. and Falmagne, J.-C., editors. (1991). Mathematical Psychology: Current Developments. New York: Springer-Verlag.
Dowling, C.E. (1991). Constructing knowledge spaces from judgements with differing degrees of certainty. In J.-P. Doignon and J.-C. Falmagne, editors, Mathematical Psychology: Current Developments, pp. 221-231. New York: Springer-Verlag.
Dowling, C.E. (1991). Constructing Knowledge Structures from the Judgements of Experts. Habilitationsschrift, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany.
Dowling, C.E. (1993). Applying the basis of a knowledge space for controlling the questioning of an expert. Journal of Mathematical Psychology, 37, 21-48.
Dowling, C.E. (1993). On the irredundant construction of knowledge spaces. Journal of Mathematical Psychology, 37, 49-62.
Dowling, C.E. (1994). Integrating different knowledge spaces. In G.H. Fischer and D. Laming, editors, Contributions to Mathematical Psychology, Psychometrics, and Methodology, pp. 149-158. New York: Springer-Verlag.
Dowling, C. and Hockemeyer, C. (1998). Computing the intersection of knowledge spaces using only their basis. In C. Dowling, F. Roberts, and P. Theuns, editors, Recent Progress in Mathematical Psychology, pp. 133-141. Hillsdale, USA: Lawrence Erlbaum Associates Ltd.
Dowling, C. and Hockemeyer, C. (1999). Integrating knowledge spaces obtained by querying different experts. Abstract of a Talk presented at the OSDA98, Amherst, MA, September 1998. Electronic Notes in Discrete Mathematics, 2.
Dowling, C. and Hockemeyer, C. (2001). Automata for the assessment of knowledge. IEEE Transactions on Knowledge and Data Engineering, 13(3), 451-461.
Dowling, C., Hockemeyer, C., and Ludwig, A. (1996). Adaptive assessment and training using the neighbourhood of knowledge states. In C. Frasson, G. Gauthier, and A. Lesgold, editors, Intelligent Tutoring Systems, volume 1086 of Lecture Notes in Computer Science, pp. 578-586. Berlin: Springer-Verlag.
Dowling, C. and Kaluscha, R. (1995). Prerequisite relationships for the adaptive assessment of knowledge. In J. Greer, editor, Artificial Intelligence in Education, pp. 43-50. Charlottesville, VA: Association for the Advancement of Computing in Education (AACE).
Dowling, C., Roberts, F., and Theuns, P., editors. (1998). Recent Progress in Mathematical Psychology. Scientific Psychology Series. Hillsdale, USA: Lawrence Erlbaum Associates Ltd.
Düntsch, I. and Gediga, G. (1995). Skills and knowledge structures. British Journal of Mathematical and Statistical Psychology, 48, 9-27.
Düntsch, I. and Gediga, G. (1996). On query procedures to build knowledge structures. Journal of Mathematical Psychology, 40, 160-168.
Düntsch, I. and Gediga, G. (1998). Knowledge structures and their applications in CALL. In S. Jager, J. Nerbonne, and A. van Essen, editors, Language Teaching and Language Technology, pp. 177-186. Lisse: Swets and Zeitlinger.
Eppstein, D., Falmagne, J.-C., and Ovchinnikov, S. (2008). Media Theory: Interdisciplinary Applied Mathematics. Berlin, Heidelberg: Springer-Verlag.
Falmagne, J.-C. (1989). A latent trait theory via stochastic learning theory for a knowledge space. Psychometrika, 54, 283-303.
Falmagne, J.-C. (1989). Probabilistic knowledge spaces: a review. In F. Roberts, editor, Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, volume 17 of IMA, pp. 283-303. New York: Springer-Verlag.
Falmagne, J.-C. (1993). Stochastic learning paths in a knowledge structure. Journal of Mathematical Psychology, 37, 489-512.
Falmagne, J.-C. (1994). Finite markov learning models for knowledge structures. In G. Fischer and D. Laming, editors, Contributions to Mathematical Psychology, Psychometrics, and Methodology. New York: Springer-Verlag.
Falmagne, J.-C. (1996). Errata to SLP. Journal of Mathematical Psychology, 40, 169-174.
Falmagne, J.-C. (1999). ALEKS, an application of knowledge space theory. Tutorial given at the OSDA98, Amherst, MA, September 1998. Electronic Notes in Discrete Mathematics, 2.
Falmagne, J.-C. and Doignon, J.-P. (1988). A class of stochastic procedures for the assessment of knowledge. British Journal of Mathematical and Statistical Psychology, 41, 1-23.
Falmagne, J.-C. and Doignon, J.-P. (1988). A markovian procedure for assessing the state of a system. Journal of Mathematical Psychology, 32, 232-258.
Falmagne, J.-C. and Doignon, J.-P. (1993). A stochastic theory for system failure assessment. In B. Bouchon-Meunier, L. Valverde, and R.R. Yager, editors, Uncertainty in Intelligent Systems, pp. 431-440. Amsterdam: North-Holland.
Falmagne, J.-C. and Doignon, J.-P. (1997). Stochastic evolution of rationality. Theory and Decision, 43, 107-138.
Falmagne, J.-C. and Doignon, J.-P. (1998). Meshing knowledge structures. In C. Dowling, F. Roberts, and P. Theuns, editors, Recent Progress in Mathematical Psychology, pp. 143-153. Hillsdale, USA: Lawrence Erlbaum Associates Ltd.
Falmagne, J.-C. and Doignon, J.-P. (2011). Learning Spaces: Interdisciplinary Applied Mathematics. Berlin, Heidelberg: Springer-Verlag.
Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P. and Johannesen, L. (1990). Introduction to knowledge spaces: How to build, test and search them. Psychological Review, 97, 201-224.
Falmagne, J.-C. and Lakshminarayan, K. (1994). Stochastic learning paths---estimation and simulation. In G. Fischer and D. Laming, editors, Contributions to Mathematical Psychology, Psychometrics, and Methodology. New York: Springer-Verlag.
Falmagne, J.-C. and Ovchinnikov, S. (2002). Media Theory. Discrete Applied Mathematics, 121, 83-101.
Fischer, G. and Laming, D., editors. (1994). Contributions to Mathematical Psychology, Psychometrics, and Methodology. New York: Springer-Verlag.
Fries, S. (1997). Empirical validation of a markovian learning model for knowledge structures. Journal of Mathematical Psychology, 41, 65-70.
Heller, J. and Repitsch, C. (2008). Distributed skill functions and the meshing of knowledge structures. Journal of Mathematical Psychology, 52(3), 147-157.
Hockemeyer, C. (1997). Using the basis of a knowledge space for determining the fringe of a knowledge state. Journal of Mathematical Psychology, 41, 275-279.
Hockemeyer, C. (2001). Tools and utilities for knowledge spaces. Unpublished technical report, Institut für Psychologie, Karl-Franzens-Universität, Graz, Austria.
Hockemeyer, C., Albert, D., and Brandt, S. (1998). Surmise relations between courses. Abstract of a talk presented at the 29th EMPG meeting, Keele, UK, September 1998. Journal of Mathematical Psychology, 42, 508.
Hockemeyer, C., Held, T., and Albert, D. (1998). RATH---a relational adaptive tutoring hypertext WWW-environment based on knowledge space theory. In C. Alvegård, editor, CALISCE'98: Proceedings of the Fourth International Conference on Computer Aided Learning in Science and Engineering, pp. 417-423. Göteborg, Sweden: Chalmers tekniska högskola.
Kambouri, M. (1991). Knowledge assessment: A comparison between human experts and computerized procedure. Doctoral Dissertation, New York University.
Kambouri, M., Koppen, M., Villano, M., and Falmagne, J.-C. (1991). Knowledge assessment: Tapping human expertise. Irvine Research Unit in Mathematical Behavioral Sciences. University of California.
Kambouri, M., Koppen, M., Villano, M., and Falmagne, J.-C. (1994). Knowledge assessment: tapping human expertise by the QUERY routine. International Journal of Human-Computer Studies, 40, 119-151.
Koppen, M. (1989). Ordinal Data Analysis: Biorder Representation and Knowledge Spaces. Doctoral Dissertation, Katholieke Universiteit te Nijmegen, Nijmegen, Netherlands.
Koppen, M. (1993). Extracting human expertise for constructing knowledge spaces: An algorithm. Journal of Mathematical Psychology, 37, 1-20.
Koppen, M. (1998). On alternative representations for knowledge spaces. Mathematical Social Sciences, 36, 127-143.
Koppen, M. and Doignon, J.-P. (1990). How to build a knowledge space by querying an expert. Journal of Mathematical Psychology, 34, 311-331.
Lakshminarayan, K. and Gilson, F. (1998). An application of a stochastic knowledge structure model. In C. Dowling, F. Roberts, and P. Theuns, editors, Recent Progress in Mathematical Psychology, pp. 155-172. Hillsdale, USA: Lawrence Erlbaum Associates Ltd.
Lukas, J. and Albert, D. (1993). Knowledge assessment based on skill assignment and psychological task analysis. In G. Strube and K. Wender, editors, The Cognitive Psychology of Knowledge, volume 101 of Advances in Psychology, pp. 139-160. Amsterdam: North-Holland.
Muller C. (1989). A procedure for facilitating an expert's judgments on a set of rules. In E. Roskam, editor, Mathematical Psychology in Progress, pp. 157-170. Berlin: Springer-Verlag.
Pilato, G., Pirrone, R., and Rizzo, R. (2008). A KST-based system for student tutoring. Applied Artificial Intelligence, 22, 283-308.
Rusch, A. and Wille, R. (1996). Knowledge spaces and formal concept analysis. In H.-H. Bock and W. Polasek, editors, Data Analysis and Information Systems, Studies in Classification, Data Analysis, and Knowledge Organization, pp. 427-436. Berlin: Springer-Verlag.
Schrepp, M. (1997). A generalization of knowledge space theory to problems with more than two answer alternatives. Journal of Mathematical Psychology, 41, 237-243.
Schrepp, M. (1999). Extracting knowledge structures from observed data. British Journal of Mathematical and Statistical Psychology, 52, 213-224.
Schrepp, M. (1999). On the empirical construction of implications between bi-valued test items. Mathematical Social Sciences, 38, 361-375.
Schrepp, M. (2001). A method for comparing knowledge structures concerning their adequacy. Journal of Mathematical Psychology, 45, 480-496.
Schrepp, M. and Held, T. (1995). A simulation study concerning the effect of errors on the establishment of knowledge spaces by querying experts. Journal of Mathematical Psychology, 39, 376-382.
Stefanutti, L. and Albert, D. (2002). Efficient assessment of organizational action based on knowledge space theory. In K. Tochtermann and H. Maurer, editors, 2nd International Conference on Knowledge Management, Journal of Universal Computer Science, 183-190.
Strube, G. and Wender, K., editors. (1993). The Cognitive Psychology of Knowledge, volume 101 of Advances in Psychology. Elsevier.
Suck, R. (1998). Ordering orders. Mathematical Social Sciences, 36, 91-104.
Suck, R. (1999). The basis of a knowledge space and a generalized interval order. Electronic Notes in Discrete Mathematics, 2.
Suck, R. (1999). A dimension-related metric on the lattice of knowledge spaces. Journal of Mathematical Psychology, 43, 394-409.
Taagepera, M., Arasasingham, R., Potter, F., Soroudi, A., Lam, G. (2002). Following the Development of the Bonding Concept Using Knowledge Space Theory. Journal of Chemical Education, 79, 1756.
Taagepera, M. and Noori, S. (2000). Mapping Students' Thinking Patterns in Learning Organic Chemistry by the Use of the Knowledge Space Theory. Journal of Chemical Education, 77, 1224.
Taagepera, M., Potter, F., Miller, G., and Lakshminarayan, K. (1997). Mapping students thinking patterns by the use of knowledge space theory. International Journal of Science Education, 19, 283-302.
Thiéry, N. (2001). Dynamically Adapting Knowledge Spaces. Doctoral Dissertation, University of California, Irvine.
Theuns, P. (1998). Building a knowledge space via boolean analysis of co-occurrence data. In C. Dowling, F. Roberts, and P. Theuns, editors, Recent Progress in Mathematical Psychology, pp. 173-194. Hillsdale, USA: Lawrence Erlbaum Associates Ltd.
Villano, M. (1991). Computerized knowledge assessment: Building the knowledge structure and calibrating the assessment routine. Doctoral Dissertation, New York University.
Villano, M., Falmagne, J.-C., Johannsen, L., and Doignon, J.-P. (1987). Stochastic procedures for assessing an individual's state of knowledge. In Proceedings of the International Conference on Computer-Assisted Learning in Post-Secondary Education, Calgary 1987, pp. 369-371. Calgary: University of Calgary Press.
Wille, R. (1999). Formal concept analysis. Abstract of a Tutorial given at the OSDA98, Amherst, MA, September 1998. Electronic Notes in Discrete Mathematics, 2.
Wille, R. (1999). Mathematical support for empirical theory building. Abstract of a Talk presented at the OSDA98, Amherst, MA, September 1998. Electronic Notes in Discrete Mathematics, 2.