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Abstract

As implemented in the system discussed here, the assessment of knowledge in a learn-

ing space for a scholarly topic, such as beginning algebra, is comprehensive by design,

in that the types of problems that can be asked in any assessment come from a large

collection encompassing the full curriculum for the topic. The product of an assessment

is a knowledge state gathering all the types of problems that the student is capable of

solving. Typically, the number of feasible knowledge states is large, on the order of 108.

The duration of an assessment is nevertheless tolerable, ranging around 30−35 problems.

We summarize the basic concepts underlying learning spaces and report the results of

a large scale study (210,102 assessments) investigating whether such an assessment is

predictive of the subject’s responses to problems that are not part of the assessment.

In each assessment, an extra question was asked, the response to which is predictable

from the assessed state. The mean correlation between predicted and observed responses

(correct or false) was around .67, and the mean log odds ratio 2.75. This type of analysis

resembles the standard item-test correlations computed for the evaluation of psychome-

tric instruments. The essential technical and philosophical differences between the two

approaches are discussed.
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A. Background and Introduction

A learning space is a particular kind of ‘knowledge space.’ In essence, it is a family of sets,

called knowledge states, in which learning can proceed smoothly and consistently, one type

of problem at a time. The exact definition is recalled in Section B, in the form of two

pedagogically compelling axioms labelled [K1] and [K2]. Many aspects of these structures

have been investigated in detail, and the results were reported in various publications (see

in particular, Doignon and Falmagne, 1985; Falmagne and Doignon, 1988; Albert and Lukas,

1999; Doignon and Falmagne, 1999; Falmagne et al., 2006)1. A learning space is known in the

combinatorics literature as an antimatroid, a structure introduced by Edelman and Jamison

(1985) (cf. also Welsh, 1995; Björner et al., 1999).

Assessing knowledge in a learning space contrasts with applying a standardized test, whose

aim is to obtain a numerical score indicative of a degree of competence in some broad topic

according to the principles of psychometric theory (c.f., for example, Nunnally and Bernstein,

1994). In the standardized test case, the issues of the reliability and, especially, the validity

of the measurement, are legitimate concerns. We have a different situation in the case of a

learning space because the set of all the questions potentially used in any assessment is in

principle designed to represent a fully comprehensive coverage of a particular curriculum (such

as beginning algebra, or possibly all of K-12 mathematics). Evidently, one may question the

comprehensiveness of the domain of the learning space, and object to the presence or absence

of some problem types. This can be verified by experts, and corrected if need be. One may

also want to evaluate the extent to which the knowledge state resulting from the assessment

is predictive of the student’s responses to problems not used in the assessment. The subject

of this paper is just such an evaluation. We go back to the critical issue of measuring the

validity of an assessment in a learning space later in this paper.

To avoid any misunderstanding, a specification regarding our vocabulary is useful. In

the sequel, we use ‘problem’ to mean problem type, and we call an ‘instance’ a particular

case of a problem, obtained by randomly choosing the numbers involved in the problem, and

the ‘story line’ in the case of a word problem. For example, the problem entitled Word

problem with decimal operations: Type 1 currently has five story lines, one of them

yielding an instance such as:

1An extensive database on knowledge spaces is maintained by Cord Hockemeyer at the University of Graz:

http://wundt.uni-graz.at/kst.php.
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Abdul works mowing lawns and raking. He earns $5.40 an hour for mowing and

$4.40 an hour for raking. How much will he earn for 5 hours of mowing and 1

hour of raking?

The dollar amounts are multiples of $0.10 and are chosen in specified intervals possibly

different for each of the story lines, integer amounts being excluded. Counting the five story

lines and all the numerical cases for each of them, we end up with about 28,000 instances

for this particular problem. Giving this problem to a subject in the course of an assessment

results in the random choice of one among these 28,000 instances. Thus, an instance in our

sense corresponds to an item in standardized testing.

The final product of an assessment is the knowledge state that contains all those problems,

and only those problems, that the student is capable of solving, barring careless errors. (In

the application of learning spaces considered here, there are no lucky guesses since all the

questions have either open responses or multiple choices with a large number of possible

responses.) Such a knowledge state is one among many that are feasible. Typically—say,

in arithmetic or beginning algebra—the number of feasible knowledge states in a learning

space is on the order of 108. The duration of an assessment is nevertheless tolerable, ranging

around 30-35 problems in most cases. This paper describes the results of a large scale study,

based on 210,102 assessments in a learning space for beginning algebra. In each of these

assessments, an extra problem p was randomly selected in a uniform distribution on the set

of all the problems, and an instance of that problem, also randomly chosen, was given to

the subject at some point during the assessment. The response to that problem was not

taken into account in gauging the knowledge state. However, as the knowledge state is a

complete description of someone’s mastery in the relevant topic, a prediction can be made of

that person’s mastery of any problem in the domain. So, the correlation between the actual

response of the person to problem p and the prediction derived from the person’s knowledge

state obtained from the assessment can be estimated by standard indices. We report here

the results of such computations for the case of a learning space for beginning algebra, which

has a database containing 250 problems. Note that in some cases, another instance of the

extra problem p may also be presented to the student as part of the assessment. All such

cases have been discarded for this study.

The next section recalls and discusses the axioms of a learning space and some of their

consequences. Section C summarizes and illustrates the basic mechanism of the assessment

instrument, the mathematical underpinnings of which have been fully described elsewhere

(see e.g. Falmagne and Doignon, 1988; Doignon and Falmagne, 1999). The correlation data
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and the issue of the validity/reliability of the assessment and are covered in Section D. The

paper ends, in Section E, with a summary and a discussion.

B. Learning Spaces

Consider a broad topic in mathematics education, such as beginning algebra (sometimes

called “Algebra 1”). From the standpoint of assessing the students’ competence, this topic

can be delineated by a finite set Q of problems that a student must learn to solve. The set

Q is intended to be a fully representative coverage of the curriculum. An examination of a

sample of textbooks indicates that, for beginning algebra, the set Q contains between two and

three hundred problems. A knowledge structure on Q is a family K of subsets of Q containing

all the knowledge states that are feasible, that is, that could characterize some individual in

a particular population under consideration. In other words, an individual whose knowledge

state is K can, in principle, solve all the problems in K and would fail any problem not in K.

It is assumed that a knowledge structure K contains both the empty set and the total set

Q of problems: we conceive that it is possible for someone to know nothing in Q, and for

someone else to know everything in Q. Because algebra is a highly structured topic, |K| is

considerably less than 2250, the number of subsets in a set of size 250. Typically2, |K| is on

the order of 108, which is well within the capabilities of personal computers. Note that, in

the sequel, we often say ‘state’ to mean ‘knowledge state.’

Axioms. Further constraints are imposed on K in the form of the two axioms recalled below

(cf. Falmagne et al., 2006; Cosyn and Uzun, 2005), making the pair (Q,K) a learning space.

[K1] If K ⊂ L are two knowledge states in K, with |L\K| = n, then there is a chain of states

K0 = K ⊂ K1 ⊂ · · · ⊂ Kn = L such that Ki = Ki−1 ∪ {qi} with qi ∈ Q for 1 ≤ i ≤ n.

In words, intuitively: If the state K of the learner is included in some other state L

then there is a sequence of problems q1, . . . , qn that are learnable one at a time, leading

the individual from state K to state L.

[K2] If K ⊂ L are two knowledge states in K, with q /∈ K and K ∪ {q} ∈ K for some

problem q, then L ∪ {q} ∈ K.

In words: If problem q is learnable from state K, then it is learnable from any state

L including K. Or: knowing more does not make a student less capable to learn

something new.

2For elementary topics in mathematics or science, for example.
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In studying these axioms, the exact interplay between the mathematics and the pedagogy

must be understood clearly. By themselves, Axioms [K1] and [K2] do not guarantee that

the collection of problems is learnable. For these axioms to be useful, they must express a

pedagogical reality. A basic idea is that for a student to be able to master any problem q,

there must be some state K that can be reached by the student, such that q can be mastered

from state K; thus, K ∪ {q} must also be a state. Axioms [K1] and [K2] generalize and

systematize this idea.

Remark3. To understand what these axioms mean and do not mean, it is useful to realize

that they are equivalent to two quite different looking conditions, which are much less obvious

pedagogically. Cosyn and Uzun (2005) have shown that Axiom [K1] and [K2] are satisfied

by a knowledge structure K if and only if the two axioms below also hold:

[K1*] The knowledge structure K is well-graded, that is, if K and L are any two distinct

states differing by exactly n problems, then there exists a sequence of states K0 =

K, K1, . . . ,Kn = L such that, for 0 ≤ i < n, the two states Ki+1 and Ki differ by

exactly one problem: either Ki+1 = Ki ∪ {q} or Ki = Ki+1 ∪ {q} for some problem q.

[K2*] The knowledge structure K is closed under union, that is, if K and L are any two states,

then K ∪ L is also a state.

Many results can be derived from these axioms, which are described in detail in Doignon

and Falmagne (1999). One important consequence of [K1] and [K2] is recalled informally

below (Fringe Theorem), which is essential from an educational standpoint. It relies on a

crucial pair of concepts.

The two fringes of a knowledge state. The outer fringe of a state K is the set containing

all the problems q not in K such that K ∪ {q} is also a state. Thus, the outer fringe of a

student’s state contains all the problems that the student is ready to learn. The inner fringe

of a state K is the set of all the problems q such that K \ {q} is also a knowledge state. In

other words, the inner fringe contains all the problems representing the ‘high points’ of the

student’s competence.

Fringe Theorem. The knowledge state of a student is defined by the inner fringe and

the outer fringe of the state. Thus, if the results of an assessment are summarized in the

form of the two fringes of a state, the state is completely specified (Doignon and Falmagne,

1999, Theorem 2.8, (i) ⇒ (v)).

3This remark can be skipped without loss of continuity.
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Tables 1a and 1b contain an actual example of the two fringes of a knowledge state for a

student in beginning algebra, with each problem being represented by one instance. Taken

together, the two fringes amount to 14 problems. This suffices to specify the 134 problems

contained in that student’s knowledge state. The economy is notable. Moreover, the summary

is meaningful for an instructor.

Table 1: A knowledge state in beginning algebra specified by its two fringes

Table 1a. Outer fringe (9 problems): What the student is ready to learn.

Word problem with linear inequalities:

The sum of two numbers is less than or equal to 13. The second number is 5 less than the
first. What are the possible values for the first of the two numbers?

Solving a rational equation that simplifies to a linear equation (Type 1):

Solve for u: −6 = − 8
u .

Word problem on mixed number proportions:

A chocolate chip cookie recipe requires one and one quarter cups of flour to one cup of
chocolate chips. If two and one half cups of flour is used, what quantity of chocolate chips
will be needed?

Y -intercept of a line:

Find the y-intercept of the line whose equation is y = 17
15x− 5

4 .

Multiplying polynomials:

Multiply and simplify: (6z + 6w − 1)(5z + 3w − 3).

Word problem on inverse proportions:

Suppose that 8 machines can complete a given task in 5 days. If there were 10 machines,
how many days would it take for them to finish the same task?

Word problem on percentage (type 3):

The price of a gallon of gas has risen to $2.85 today. Yesterday’s price was $2.79. Find the
percentage increase. Round your answer to the nearest tenth of a percent.

Area and perimeter of a rectangle:

The length of a rectangle is twice its width. If the area of the rectangle is 162 ft2, find its
perimeter.

Union and intersection of sets: The sets F and A are defined by

F = {x|x is an integer and − 4 < x ≤ 0},
A = {x|x is an integer and 1 < x ≤ 3}.

Find F ∪A and F ∩A.
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Table 1b. Inner fringe (5 problems) : What the student can do (High Points).

Power rule—Positive exponents: Write without parentheses: ( y3

−2x)3.

Squaring a binomial: Expand the square: (6x− 6)2

Properties of real numbers: For each equation below, indicate the property

of real numbers that justifies the equation:
3
4 + (m + b) = (3

4 + m) + b

7 · 1
7 = 1

0 = 4 + (−4)

m(3
5 + 7) = m · 3

5 + m · 7

Solving a linear inequality (type 4): Solve for t: −7
2 t + 9 > −8t− 3.

Writing a negative number without a negative exponent:

Rewrite without an exponent: (−3)−1.

C. Uncovering the Knowledge State: The Assessment Engine

The assessment is achieved by a particular software engine whose task is to uncover, by

efficient questioning, the knowledge state of a particular student under examination. The

situation is similar to that of adaptive testing—i.e. the computerized forms of the GRE and

other standardized tests (see, for example, Wainer et al., 2000)—except that the outcome

of the assessment is a knowledge state, rather than a numerical estimate of a student’s

competence in the topic. The procedure follows a scheme outlined in Figure 1.

response

Questioning Rule
Selected Problem

Updating
    Rule

of the states
on trial n

of the states
on trial n+1

Selected
instance

Likelihood Student's Likelihood

Figure 1. Diagram of the transitions in the assessment procedure. Three operations are involved:

the selection of a maximally informative problem, the choice of a particular instance, and the

updating of the likelihood distribution.

At the outset of the assessment (trial 1 of the procedure), each of the knowledge states is

assigned a certain a priori likelihood, which may depend upon the school year of the student

if it is known, or some other information. The sum of these likelihoods is equal to 1. They

play no role in the final result of the assessment but may be helpful in shortening it. If no
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useful information is available, then all the states are assigned the same likelihood. The first

problem p1 is chosen so as to be ‘maximally informative.’ This is interpreted to mean that,

on the basis of the current likelihoods of the states, the student has about a 50% chance of

knowing how to solve p1. In other words, the sum of the likelihoods of all the states containing

p1 is as close to .5 as possible4. If several problems are equally informative (as may happen

at the beginning of an assessment), one of them is chosen at random. The student is then

asked to solve an instance of that problem, also picked randomly. The student’s answer

is then checked by the system, and the likelihoods of all the states are modified according

to the following updating rule. If the student gave a correct answer to p1, the likelihoods

of all the states containing p1 are increased and, correspondingly, the likelihoods of all the

states not containing p1 are decreased (so that the overall likelihood, summed over all the

states, remains equal to 1). A false response given by the student has the opposite effect: the

likelihoods of all the states not containing p1 are increased, and those of the remaining states

decreased. The exact formula of the operator modifying the likelihood distribution will not

be recalled here; see Definition 10.10 in Doignon and Falmagne (1999). It is proved there

that the operator is commutative, in the sense that its cumulative effect in the course of a

full assessment does not depend upon the order in which the problems have been proposed

to the student. This commutativity property is consistent with the fact that, as shown by

Mathieu Koppen5, this operator is Bayesian. If the student does not know how to solve a

problem, he or she can choose to answer “I don’t know” instead of guessing. This results in

a substantial increase6 in the likelihood of the states not containing p1, thereby decreasing

the total number of questions required to uncover the student’s state. Problem p2 is then

chosen by a mechanism identical to that used for selecting p1, and the likelihood values

are increased or decreased according to the student’s answer via the same updating rule.

Further problems are dealt with similarly. In the course of the assessment, the likelihood

of some states gradually increases. The assessment procedure stops when two criteria are

fulfilled: (1) the entropy of the likelihood distribution, which measures the uncertainty of the

assessment system regarding the student’s state, reaches a critical low level, and (2) there

is no longer any useful question to be asked (all the problems have either a very high or a

very low probability of being solved correctly). At that moment, a few likely states remain

and the system selects the most likely one among them. Note that, because of the stochastic
4A different interpretation of ‘maximally informative’ was also investigated, based on the minimization of

the expected entropy of the likelihood distribution. This method did not result in an improvement, and was

computationally more demanding.
5Personal communication.
6As compared to the case of a false response, which could be attributed to a careless error.
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nature of the assessment procedure, the final state may very well contain a problem to which

the student gave a false response. Such a response is thus regarded as due to a careless error.

As mentioned earlier, because all the problems have either open-ended responses or multiple

choice responses with a large number of possible solutions, the probability of lucky guesses is

negligible.

To illustrate the evolution of an assessment, we use a graphic representation in the guise

of the likelihood map of the learning space at some moment in the assessment of a student.

For practical reasons, we chose an example from Falmagne et al. (2006) involving a part of

arithmetic involving 108 problems, rather that the full beginning algebra domain whose large

number of states would render the graphic representation computationally more difficult. In

principle, each colored pixel in the oval shape of Figure 2 represents one of the 57,147 states

of the learning space for that part of arithmetic. (Because of graphics limitations, some

grouping of similar states into a single pixel was necessary.)

Knowledge states are sorted according to the number of problems they contain, from 0

problems on the far left to 108 problems on the far right. The leftmost point stands for

the empty knowledge state, which is that of a student knowing nothing at all in arithmetic.

The rightmost point represents the full knowledge state and corresponds to a student having

mastered all the problems in that part of arithmetic. The points located on any vertical

line within the oval represent knowledge states containing exactly the number of problems

indicated on the abscissa.

Empty state Full state

Entropy = 8.19

108

Most likely

Most unlikely

Figure 2. Likelihood map of the learning space representing the exemplary

part of arithmetic under discussion.

The oval shape is chosen for aesthetic reasons and reflects the fact that, by and large, there

are many more states around the middle of the scale than around the edges. For instance,

there are 1,668 states containing exactly 75 problems, but fewer than 100 states containing

either more than 100 problems or fewer than 10 problems. The arrangement of the points on

any vertical line is largely arbitrary.
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The color of a pixel represents the likelihood of the corresponding state. A color coded

logarithmic scale, pictured on the right of Figure 2, is used to represent the likelihood values.

Red, orange, and yellow-white7 indicate states with a likelihood exceeding the mean of the

distribution, with yellow-white marking the most likely states. Conversely, dark blue, blue,

and light blue represent states that are less likely than the mean, with dark blue marking the

least likely states.

Figure 3 displays a sequence of likelihood maps describing the evolution of an assessment

from the very beginning, before the first problem, to the end, after the response to the last

problem is recorded by the system and acted upon to compute the last map. The complete

assessment took 24 questions, which is close to the average for this part of arithmetic. The

initial map results from preliminary information obtained from that student. The redish

strip of that map represents the a priori relatively high likelihood of the knowledge states

containing between 58 and 75 problems: as a six grader, this student can be assumed to have

mastered about two thirds of this curriculum.

Next to each map in Figure 3, we indicate the entropy of the corresponding likelihood

distribution, and the student’s response to the question (correct, false, or “I don’t know”).

Note that the initial entropy is 10.20, which is close to the theoretical maximum of 10.96

obtained for a uniform distribution on a set of 57,147 knowledge states. As more information

is gathered by the system via the student’s responses to the questions, the entropy decreases

gradually. Eventually, after 24 questions have been answered, a single very bright point

remains (indicated by the red arrow) among mostly dark blue points and a few bright points.

This very bright point indicates the most likely knowledge state for that student, based on

the answers to the problems. The assessment stops at that time because the entropy has

reached a critical low level and the next ‘best’ problem to ask has only a 19% chance of being

solved, and so would not be very informative. In this particular case only 24 problems have

sufficed to pinpoint the student’s knowledge state among 57,147 possible ones. This striking

efficiency is achieved by the numerous inferences implemented by the system in the course of

the assessment. With the full arithmetic curriculum from the 4th grade up, the assessment

takes around 30-35 questions.

7Or shades of increasingly light grey in a black and white copy, and similarly darker and darker ones for

the lower part of the scale.
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Final state

Final likelihood

Initial likelihood

Q. #24
(correct)

Q. #23

(correct)

(correct)

(false)
Q. #3

(false)

Q. #16
(false)

(false)
Q. #17

Q. #9
(I don't know)

(correct)
Q. #10

E = 9.55

E = 3.36

E = 3.06

E = 3.68

E = 4.81

E = 4.94

E = 5.02

E = 6.29

E = 6.82

E = 7.63

E = 9.21

E = 9.37

Entropy = 10.20

Question #1

Q. #2

Most unlikely

Most likely

Figure 3. Sequence of likelihood maps
representing an assessment converging
toward the student’s knowledge state.
The final state is marked by the long
arrow pointing to the circle.

D. Validity and/or Reliability of the Assessment

As indicated in our introductory section, an assessment by the method described above

contrasts with a standardized test, whose aim is to obtain a numerical score indicative of a

degree of competence in a topic. In the latter case, the issues of the reliability and, especially,

the validity of the measurement, are paramount in view of the method used to construct the

test. The situation is different in the learning space case because the collection of all the

problems potentially used in any assessment represents a fully comprehensive coverage of a

particular curriculum, such as beginning algebra, the leading example in this paper. Arguing

that such an assessment, if it is reliable, is also automatically endowed with a corresponding

amount of validity is plausible. In other words, assuming that the database of problem types

is a faithful representation of the curriculum, the measurement of reliability is confounded

with that of validity. (We shall go back to this issue, which is fundamental, in our discussion

section.) In any event, a different approach is taken here to evaluate the reliability–validity

of the results. In practically all assessments, an additional test problem is randomly selected

in a uniform distribution on the set of all problems not used in the assessment and given

to the student, whose answer is not taken into account in assessing the state. However, at

the end of the assessment, the student’s response to this problem—correct or false—can be

predicted on the basis of the assessed knowledge state. For all topics (arithmetic, beginning
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algebra, etc.) extensive data are available for most problems in the form of a 2 × 2 table,

with one of the two dichotomies referring to the response predicted from the estimated state,

and the other to the observed one (see Matrix (1)). How well the assessed state is capable

of predicting the response to the additional problem can be evaluated by standard statistical

indices. In this paper, we report the results for two such indices: the tetrachoric coefficient

and the log odds ratio, together with their correlation.

The subjects were college or high school students (85% and 15%, respectively) who took

assessments in beginning algebra via the internet, either in school or at home. In most

cases, such assessments were taken in the framework of a computerized course (see Remark

(b) below). These data were provided by 210,102 assessments. For each of the problems

in beginning algebra, we have a 2 × 2 table of the following form, in which ‘in’ stands for

‘problem is in the assessed state’ (and so the prediction is that the response should be correct,

barring a careless error), and ‘out’ for the alternative:

(1)

out in

false

correct

 a b

c d

 .

(These data matrices are available at the URL http://www.aleks.com/paper_psych,

together with a few exemplary instances of some of the problems.) Thus, for a particular

problem p, the letters a and c represent the numbers of cases where p was out of the assessed

state, and the student’s responses were false, and correct, respectively. The interpretation of

b and d are similar in the in case.

For each of these data matrices, we compute two statistics: the tetrachoric coefficient

and the log odds ratio. The standard rationale for using the tetrachoric coefficient is the

assumption that the data originated from sampling an underlying 2-dimensional Gaussian

distribution. Hypothetically, each of the dimensions is split into two half intervals. The 2×2

table then reflects the set membership in those intervals. Whether this assumption is plausible

in our particular case is debatable. In particular, the all-or-none character of the prediction

of success or failure based on the assessed state is a priori inconsistent with the Gaussian as-

sumption. Our choice of this coefficient was dictated by the wish to compare our results with

similar statistics in standardized tests, such as the item-test correlation. In any event, the log

odds ratios were also computed. We will see that the results provided by the two statistics are

closely related (see Figure 7). The approximation used for the computation of the tetrachoric

coefficient is the AS 116 Algorithm of Brown, 1977. We used the routine of J. S. Ueber-

sax —http://ourworld.compuserve.com/homepages/jsuebersax/tetra.htm—translated

to VBA by Keizo Hori.
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Figure 4. Distribution of the values of the tetrachoric coefficient for 204 problems

in beginning algebra, computed from 210,102 assessments. The average number

of data points per problem is 210,102 / 204 ≈ 1,030.

Figure 4 displays the distribution of 204 tetrachoric coefficient values, each corresponding to

one of 204 problems from a database of 250 problems in beginning algebra. Forty-six problems

were removed because the relevant data were too meager or the approximation formula for

the computation of the tetrachoric coefficient was not defined (one of the margins contained

a zero). The mean and the median of the distribution are .67 and .68, respectively. In the

distribution pictured in Figure 4, the values of the tetrachoric coefficient are indicated by the

abscissa, and the number of problems by the ordinate. Note that the problems yielding a

relatively low value (below .5) for the tetrachoric coefficient are not regarded as candidates

for elimination from the assessment. Rather, the low value is regarded as an indication that

the problem may be misplaced in the structure of the learning space, or possibly formulated

ambiguously. For reference, we also display in Figure 5 a diagram indicating the sample size

of the data for each of the 204 tetrachoric coefficient values, that is, the sum a + b + c + d in

Matrix (1). The average sample size is 210,102/204 ≈ 1,030.

A similar analysis was performed in terms of the log odds ratio (Breslow, 1981; Agresti,

1995), based on 185 of the 204 matrices. (Nineteen problems were discarded because the

2× 2 matrix contained a zero cell.) The distribution of the values of this index is displayed

in Figure 6. The mean and the median of the distribution were approximately 2.75 and 2.58,

respectively. The diagram of the correlation between the tetrachoric coefficient and the log

odds ratio, based on the 185 data points for which both indices were available, is given in

Figure 7.
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Figure 5. Correlation diagram of the values of the tetrachoric coefficient vs the sample

size: a + b + c + d in Matrix (1). Each point represents one of the 204 matrices.
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Figure 6. Distribution of the values of the log odds ratio statstic for 185 problems

in beginning algebra (out of 204; 19 problems with a zero cell were discarded).

Remarks. (a) We must point out that, from the standpoint of predicting the mastery

of beginning algebra on the basis of the assessment, the tetrachoric coefficient is a somewhat

underestimating index8. Indeed, while there are practically no lucky guesses, there are careless

errors, which are bound to lower the values of all the tetrachoric coefficients, albeit unequally9.

The presence of careless errors may be appraised by comparing the average estimates of two

conditional probabilities. Denoting by a∗, b∗, c∗ and d∗ the sum of each of the numbers a, b,
8For that matter, so are any other correlation indices.
9Problems may differ widely in their propensity to elicit a careless error.
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Figure 7. Diagram of the correlation between the tetrachoric coefficient and the

log odds ratio, based on the 185 problems for which both indices were available.

c and d in Matrix (1) over all 204 problems, we obtain the average estimates

P(correct response problem in student’s state) ≈ d∗

b∗ + d∗
= .70(2)

P(error problem not in student’s state) ≈ a∗

a∗ + c∗
= .87.(3)

If there were no noise of any sort and the model were perfect, without careless errors, both

of these probabilities would be equal to 1. We could certainly refine the theory to explain

the difference between these estimates by appending to it a mechanism accounting for the

careless. Indeed, because the extra problem p is selected randomly in a uniform distribution

on the set of all problems, some students may be given two instances of the same problem.

The data from such cases, which were not used for the computation of the two correlation

indices, has in fact been used in our study to estimate the probability of making a careless

error in solving problem p. In turn, these estimates, obtained for all the problems, can then

be applied to manufacture a tetrachoric coefficient and a log odds ratio corrected for careless

errors. The importance of such considerations is that these corrected indices could be even

better tools to gauge the accuracy of the learning space as a cognitive model of the mental

organization of the scholarly material. Exploring this issue in depth would go beyond the

scope of this paper.

(b) It may perhaps be argued that our experimental conditions are far from ideal because

we had no control over the situations in which these assessments were taken. Because the

assessments were part of a course, they were in some instances supervised. In other cases, it

is possible that a student taking an assessment at home may have received substantial help

from someone. This objection is not as damaging as it may seem. Suppose indeed that a
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student has not worked alone. The assessed knowledge state would obviously not be that of

the student. This state would be either the state of whoever has been helping the student,

or a combination—a union, actually—of the states of the student of the helper. This would

happen if the help was consistent, namely, the assessment was taken jointly. Remember,

however, that the collection of states is closed under union. (This is a consequence of the

fact that [K1] and [K2] imply [K2*].) Thus, the union of the student’s state and the helper’s

state is a genuine knowledge state, and we can regard the corresponding data as legitimate.

Another reason for accepting our results, that some readers may find more convincing, resides

of course in the very large number of assessments on which our data are based.

(c) Our tetrachoric coefficients are notably high by comparison with the typical values

obtained for the item-test correlation in standardized testing. However, the lower correlations

obtained in the latter case may conceivably be due to the multiple-choice procedure used in

most cases of standardized testing, which unavoidably increases the noise in the data. To

evaluate the potential effect of such a procedure on our tetrachoric coefficients, we recalculated

all of them under the assumption that the student’s responses resulted from a multiple choice

procedure with five possible responses. Specifically, we replaced each of our 2 × 2 matrices

(1) by the matrix below:

(4)

out in

false

correct

 .8a .8b

.2a + c .2b + d

 .

This manipulation is bound to reduce the precision of our predictions. For instance, the

.87 value reported in Eq. (3) for the estimate of the average conditional probability of an

error, given that a problem is not in the student’s state, is now down to .74. Not surprisingly,

we observe a concomitant shift to the left in the distribution of Figure 4. This shift is a minor

one, however.

(d) The above remarks evoke an important issue that has not been discussed so far in

this paper. The construction of a learning space in a practical situation is still today a

very demanding task, taking several months, and relying in part on the judgment of experts

responding to probing questions about the curriculum. These questions can be generated

systematically by the QUERY routine developed by Koppen (1993), Dowling (1993a), Dowl-

ing (1993b) and further elaborated by Cosyn and Thiéry (2000) (see also Villano, 1991;

Müller, 1989; Kambouri et al., 1994; Dowling, 1994; Doignon and Falmagne, 1999). This

routine stores each response of the expert using QUERY, and makes sophisticated inferences

in choosing each successive question, so as to maximize the information and shorten the ques-
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tioning. Even so, each expert spends many hours responding to the queries. Moreover, the

resulting structure qualifies only as a preliminary step, potentially plagued by inconsistencies

in the experts’ responses (see Kambouri, 1991), and in need of refinements and corrections.

The refinement of this initial learning space relies then on a statistical analysis of students’

data, involving in particular the tetrachoric coefficient discussed in this paper, or related

indices. Note that, by contrast with the practice common in psychometrics, where an item is

often rejected when its item-test correlation is regarded as unacceptably low10, such a rejec-

tion of a problem is exceedingly rare in an empirical test of a learning space. Rather, either

one finds in such a case that the statement of the problem is defective or ambiguous, and a

revision takes place, or the local structure of the learning space affected by the problem is

reexamined and suitably altered. Such a treatment is certainly required for those problems

having values of their tetrachoric coefficient below .4 or even .5 in the distribution of Fig-

ure 4. One might be rightfully concerned by the painstaking manipulations involved in the

refinement of a learning space. We go back to this point in the discussion section.

(e) Finally, the type of assessment exemplified by the example of beginning algebra dis-

cussed in this article is applicable to learning spaces covering a much larger territory, such

as all of K-12 mathematics. An example of such a structure, involving 397 problems and

including arithmetic, beginning algebra, intermediate algebra, and pre-calculus is given in

Falmagne et al. (2006). At this time, we have not investigated the predictive power of an

assessment on such a large learning space.

E. Summary and Discussion

The aim of this research was to evaluate the extent to which an assessment in a learning

space is predictive of the mastery of the topic. In other words, we wanted to appraise

the validity of such an assessment. We took beginning algebra as an exemplary scholarly

topic. The method used for such an appraisal was systematically to ask the student an

additional problem, randomly selected, and predict the student’s response to that problem

on the basis of the student’s knowledge state diagnosed by the assessment engine. This

prediction is possible because, by definition, a knowledge state is a set containing all the

problems mastered by the student. Thus, for each problem, the available data takes the form

of a 2× 2 table of the kind displayed in (1) with the numbers of observed responses (false or

correct) in the rows, and the number of predicted ones (out or in the state) in the columns.

A tetrachoric coefficient of correlation was computed for 204 out of 250 problems in the

database for beginning algebra (46 problems were discarded because there were not enough
10A minimum value exceeding .15 is sometimes required (e.g. Kehoe, 1995).
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data or the tetrachoric coefficient was not defined for these problems). These data were

obtained from 210,102 assessments. This means that, on the average, 210,102/204 ≈ 1,030

assessments per problem were used to compute the tetrachoric coefficients. The distribution

of the values of this coefficient was displayed in Figure 4. The median of that distribution is

around .68. A similar analysis was performed with the log odds ratio, based on 185 problems.

The distribution is presented in Figure 6, and the correlation diagram presenting the joint

result for the two indices is given in Figure 7.

Our data analysis is similar to an item-test correlation study in a psychometric test,

inviting a comparison. The data presented here suggest that an assessment in a learning

space is capable of more reliable/valid predictions. An offhand conclusion in that direction

would be hasty, however, and perhaps misleading in view of the fundamental differences

between the two types of instruments. Let us review them here.

1. The objectives and the philosophy. A learning space is precisely tailored to

assess the knowledge states of subjects in a well defined area. Not only is its database of

problems curriculum driven, but it is intended to be comprehensive for that curriculum.

It seems possible to extend our type of assessment to very large learning spaces, such

as all of K-12 mathematics. However, while such a far reaching learning space has been

constructed, no solid results concerning such a large scale application are yet available.

By contrast, the ambition of a psychometric instrument is to arrive at a numerical

evaluation of one or a few aptitudes or competencies. Its philosophy owes much to

nineteenth century physics, with Galton, Pearson and Kelvin, whose credo held that

precision in science was tantamount to numerical measurement.

2. The theories. The learning spaces are defined by two axioms, [K1] and [K2], solely

motivated by pedagogical considerations. One axiom formalizes the possibility of learn-

ing the material gradually, one problem at a time. The other expresses the principle that

‘knowing more does not make one less able to learn something new.’ The mathematical

tools come from combinatorics and stochastic processes. The theoretical framework of

standardized tests is psychometric theory with all its variants. This theory is formulated

in the framework of calculus and statistics.

3. The results of the assessment or the test. The outcome of an assessment is

a knowledge state, which is exactly represented, from a theoretical viewpoint (cf. the

Fringe Theorem), by the two relatively short lists of problems in its outer and inner

fringes, such as those contained in Tables 1a and 1b. Together, these two lists pinpoint

one among possibly 108 feasible knowledge states in the learning space. The result of a
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psychometric test is a number or a numerical vector with a small number of components.

By design, the number of possible results of a test is several orders of magnitude smaller

than the typical number of feasible knowledge states in a learning space.

4. The principles underlying the construction of the test. They are dictated

by the respective objectives. In the case of a learning space, there should be a consensus

among educators that the database of problems is a comprehensive compendium for

testing the mastery of a scholarly subject. This phase is relatively straightforward. On

the other hand, the construction of the learning space, that is, the delineation of the

collection of feasible knowledge states, is extremely painstaking, and can be regarded as

satisfactory only after a prolonged period of successive revisions of the learning space,

based on data of the kind reported here in Figures 4 and 6, and yielding an acceptable

degree of predictive power. What was not clear at first is that the size of the collection

of feasible knowledge states would be manageable, considering that it is a subfamily of

a family containing 2n sets (where n is the number of problems; we have 2250 possible

subsets in the case of beginning algebra discussed here). Actually, in all the cases

investigated so far, which include only elementary mathematics and other quantitative

or highly structured topics, the size of the collection of states has been on the order

of 108, rendering learning space theory applicable. At this point, it is not yet clear

that very different subjects, such as language or history, will be as amenable to such a

treatment. The construction of a psychometric test follows very different, much stricter

rules concerning the selection of the items, in that one is not free to choose items simply

because they are desirable to have. The database of items forms a highly particular

ensemble. It is obtained by successive modifications—consisting in adding or removing

items, for example—leading to a model involving a representation of the students and

sometimes the items in a Euclidean space. Validity and reliability are primary concerns,

but they are not the only concern because the model is quite constraining: by definition,

it has to be a measurement instrument.

The last is of course the key difference between the two approaches. From a theoretical

viewpoint, a learning space is much less demanding than a psychometric model, and its

validity is entirely grounded on its reliability, that is, its predictive power regarding problems

not tested, or so we will argue here. This position is justified if there is a broad consensus

among educators that its database of problems represents a comprehensive coverage of the

curriculum, and that a student capable of solving randomly chosen instances of all the problem

types has completely fulfilled the educational goals. Some may feel uneasy about such a point

of view, and demand, for example, that the results of an assessment in a learning space be
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correlated with those of statewide and nationwide standardized achievement tests. While

such a demand would seem to be a reasonable requirement, it is predicated on the belief

that such tests are themselves fully valid, which is debatable because of the chance factors

entering in the choice of the questions from one year to the next11.

For a parting comment, we return to what is certainly the most critical phase in the appli-

cation of learning space theory, which is the actual construction of the collection of knowledge

states. We have noted such a construction was delicate and labor intensive. However, the

need for such painstaking manipulations may very well be temporary because an automati-

zation of this process is conceivable. Indeed, it turns out that the collection of all learning

spaces for a particular topic, such as beginning algebra, can be represented as a connected

graph, each vertex of which stands for a particular learning space. A random walk can be

defined on the set of all vertices of such a graph, with transitions dictated probabilistically

by statistical indices based on student data. This random walk would then evolve toward

vertices representing learning spaces increasingly well adapted to the population of students.

Thus, the learning space would be self adapting. We are not alluding here at some develop-

ments envisaged for some very distant future. The first steps in that direction have already

been taken by Thiéry in his doctoral dissertation (Thiéry, 2001). A systematic analysis of

the feasibility of such a program will be undertaken in the near future.
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